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Renormalization group calculation of distribution functions: Structural properties
for percolation clusters
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Distribution functions of properties of critical percolation clusters are calculated using the ‘‘H-cell’’ real
space renormalization group~RG!. We consider structural properties which span two terminals on percolation
clusters. These include the lengths of~minimal, average edge-to-edge, longest! self-avoiding walks, the number
of the singly connected bonds, and the masses of percolation clusters, as well as of the backbone. We show that
the RG corresponds to a~Galton-Watson! branching process, and apply theorems developed in the mathemati-
cal literature. We derive recursion relations for the distribution functions, and find exact functional forms for
their asymptotic tail behavior at both small and large arguments. The results for the minimal paths have
implications on the~multifractal! distribution of wave functions, while the singly connected bonds determine
the moments of Ising correlations on these clusters. Our results compare well with existing simulation data.
@S1063-651X~97!13806-5#

PACS number~s!: 64.60.Ak, 05.70.Jk
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I. INTRODUCTION

Consider two points on a random fractal, at a Euclide
distanceL from each other. Many physical properties depe
on the detailed geometry of the fractal network which co
nects these two ‘‘terminals.’’ For example, the wave fun
tions of localized vibrational excitations or of electrons d
cay as exp(2 l /j), wherel (L) is the length of the minima
path ~or ‘‘chemical distance’’! between the terminals on th
network @1,2#. Ising spin correlations decay at low temper
tures as exp(2 l sc/j), where l sc(L) counts the singly con-
nected bonds on this path@3#. Heisenberg spin correlation
decay as exp(2R/j), whereR(L) is the ‘‘resistance’’ be-
tween the ends, when each bond represents a unit resisto@3#.

On Euclidean spaces, the geometrical propertiesl , l sc,
andR, as well as many other lengths which determine phy
cal properties, are simply and uniquely expressed in term
L. For example,l}L. On regular hierarchical fractals, lik
the Mandelbrot-Given curve@4#, properties likel , l sc, and
R have unique power-law dependences onL when the two
end points are at the ends of the basic iteration@5#, e.g.,
l5L, or l sc5Ldsc, with dsc5 ln2/ln3. If the end points are no
at such ends, then the prefactor in this power law may os
late withL, reflecting lacunarity@6–8#.

In the present paper we are concerned withrandom frac-
tals, like percolation clusters at the percolation threshold.
such fractals, quantities likel (L) have different values for
different pairs of end points and for different realizations
the random structure. At first, research concentrated on fi
ing the typical or theaveragevalues of such quantities, an
it was found that these scale as powers ofL, e.g., ^ l &
}Ldmin @9#.

Here we studydistribution functions, like P( l ,L), where
P( l ,L)dl represents the probability to measure a shor
path in the range@ l ,l1dl# for a fixed Euclidean distanc
561063-651X/97/56~1!/172~13!/$10.00
n
d
-
-
-

-

i-
of

il-

r

f
d-

st

L, when the end points cover all possible pairs on all
realizations. Numerically, it has been noted@10,11# that, for
large l andL, P( l ,L) obeys scaling, i.e.,

P~ l ,L !5
1

l
g~ l /^ l &!. ~1!

Heuristic arguments also yielded some functional forms
the scaling functiong(v) @10,12,13#. However, there has
been no analytic derivation for Eq.~1!, or any exact argu-
ment from which the explicit functional form ofg(v) could
be derived. Such arguments are presented below.

As noted above, some physically relevant quantities
exponential in properties likel . For example, localized wave
functions behave asC}exp(2l/j). The distribution ofC is
very broad, and moments ofC were found to be character
ized by independent powers of^C& @2#. This phenomenon is
called multifractality. Here we extend earlier conclusions
such multifractality, and present results for negative m
ments. We also derive results for positive and negative m
ments of the Ising spin correlations.

Our specific calculation concentrates on percolation cl
ters @5#. At the percolation threshold, these clusters are s
tistically self-similar. Therefore, they can be described by
renormalization group~RG!. Here we use an approximat
real space RG, called the ‘‘H cell,’’ which turned out to be
very accurate for bond percolation on the square lat
@14,15#. It has also given excellent results for the permeab
ity of oil reservoirs, away from the percolation thresho
@16#. The H-cell RG is described in Sec. II. Basically,
maps groups of bonds onto renormalized bonds, as show
Fig. 1. Effectively, each renormalized bond may be d
scribed as a ‘‘Wheatstone bridge,’’ as shown in Fig. 1~c!.
Iteration of this mapping is equivalent to replacing the ori
nal lattice by a hierarchical structure, in which each bond
an internal structure which is the same as that of the orig
172 © 1997 The American Physical Society



is

ca

nly
e
th
e
-
o

i

at
an
ist
g

ti
al

io
ta
th
ti
s

u
su
f a
p

dis-

n,

re-
h
c-
the
vity
five

ies

nt
he
al

t-

s

ths
l
ted

-to-
ly
nds
re
e.g.,
of
ds
at
m-

56 173RENORMALIZATION GROUP CALCULATION OF . . .
‘‘bridge.’’ The H-cell RG equations become exact on th
hierarchical lattice. Experience shows@5# that the dilute ver-
sion of this hierarchical structure imitates the geometri
and physical properties of two dimensional~2D! percolation
clusters very well. However, so far this mapping was o
used to calculate average properties. Guided by this exp
ence we report the results from the first RG calculation of
full distribution functions. A preliminary brief report of thes
results appeared in Ref.@17#. As we show below, the calcu
lation of such distribution functions also becomes exact
the hierarchical structure related to theH-cell RG.

When one looks at geometrical properties, we show
Sec. II that theH-cell RG corresponds to abranching pro-
cess. Such processes have been widely studied in the m
ematical literature, and in Sec. III we summarize the relev
theorems. These are then used in Sec. IV to study the d
butions of the minimal and maximal paths, of average ed
to-edge self-avoiding walks~SAW!, of the number of the
singly connected bonds, and of the masses of the percola
clusters and of their backbone between the two termin
Mathematical theorems for the branching processes allow
to derive explicit expressions for the asymptotic tail behav
of the corresponding probability densities, relating the
behavior to the appropriate fractal dimension. Since
mathematical theorems apply also to the moment genera
function ^exp(sv)&, we are also able to derive exact expre
sions for the~multifractal! moments of functions likeC, or
Ising spin correlations~Sec. IV D!. Finally, a short conclu-
sion completes the paper in Sec. V.

II. ‘‘ H -CELL’’ RENORMALIZED GROUP

In this section we discuss the RG calculation of vario
structural properties of percolation clusters. The main re
here is the formulation of the RG calculation in terms o
generating function f. This formulation enables us to ma

FIG. 1. ~a! A 232 H cell with eight bonds~left!, and a renor-
malized cell with only two bonds~right!, ~b! generic parts of the
original cell, which contribute to the horizontal spanning, and~c!
hierarchical structure for the backbone.
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the RG procedure to the branching processes, which are
cussed in Sec. III.

For simplicity, we discuss two dimensional percolatio
and consider first a 232 H cell, which is shown in Fig. 1~a!.
In the RG transformation the eight bonds in the cell are
placed by a ‘‘renormalized’’ cell with only two bonds, whic
represent connectivity in the horizontal and vertical dire
tions. Considering the horizontal spanning, and ignoring
dangling bonds, one realizes that the horizontal connecti
is determined by five bonds. Given that each of these
bonds has a probabilityp (12p) to be occupied~vacant!,
the resulting configurations are displayed in Fig. 1~b! to-
gether with their probabilities. The sum of these probabilit
yields the renormalized probability of the new bond@14,5#,

p85R~p!52p525p412p312p2. ~2!

This recursion relation has the nontrivial fixed poi
pc51/2, as it should be for the bond problem. One of t
advantages of theH cell is that this result holds for a gener
L3L cell @15#.

Considering the minimal paths we find that only the righ
most configuration in the upper row of Fig. 1~b! has a mini-
mal path lengthl53, while all other spanning configuration
have l52. At pc , we thus havel53 with probability
p352p3(12p)2/p851/8, and l52 otherwise, with
p257/8. Averages ofl within a cell can be calculated from
the generating function

fmin~z!5p2z
21p3z

3. ~3!

Specifically,

^ l k&52kp213kp35S z ddzD
k

fmin~z!uz51 , ~4!

and ^ l &5 fmin8 (1)5mmin517/8.
Similar considerations on theH-cell RG can be extended

for several other structural properties, like the maximal pa
~longest SAW between the edges!, the average length of al
the edge-to-edge SAW’s, the number of the singly connec
bonds~SCB!, and the mass of the backbone~BB!:

fmax~z!5 9
16z

21 7
16z

3, ~5!

f saw~z!5 23
32z

21 9
32z

3, ~6!

f sc~z!5 1
81 2

8z1 4
8z

21 1
8z

3, ~7!

f bb~z!5 8
16z

21 2
16z

31 5
16z

41 1
16z

5, ~8!

with mmax539/16, msaw573/32, msc513/8, and
mbb547/16, respectively. Note that for the average edge
edge SAW (f saw) every SAW is considered to be equal
probable, irrespective of its actual length. This correspo
to the infinite temperature limit, where the fugacities a
equal for all the bonds. For alternative approaches see,
Refs.@18# and@19#. The generating function for the mass
the backbone is given by calculating the number of bon
which support SAW. The mass of the percolation cluster
pc is determined by the spanning configurations of the co
plete eight bond cell, from which we find that
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TABLE I. Estimates for the fractal dimensions from the RG calculations with the length rescale f
L52,3,4. The rightmost entry is the exact result~or numerical estimate if the exact value is unknown!.

Property L52 L53 L54 L→`

singly connected bonds (dsc) 0.700 0.725 0.734 3/4@21#
minimal path (dmin) 1.087 1.118 1.133 1.1460.01 @11,22#
average edge-to-edge SAW (Dsaw) 1.190 1.243 1.268 1.2960.025@23–25#
maximal path (dmax) 1.285 1.357 1.389 1.460.1 @5#

mass of backbone (Dbb) 1.555 ••• ••• 1.64760.004@26#
mass of the cluster (D) 2.155 1.979 1.928 91/48'1.896@5#
.
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fmass~z!5 15
128z

21 18
128z

31 31
128z

41 32
128z

51 23
128z

6

1 8
128z

71 1
128z

8 ~9!

yielding mmass5285/64.
These functionsf are completely determined by the RG

In order to calculate them one has to classify all poss
spanning configurations of the renormalized cell. The ti
required for this classification increases very rapidly w
increasing cell size. However, the lowest and highest or
terms in the polynomialf are easy to deduce: for a gener
L3L cell one has

f ~z!5pmz
m1•••1pMz

M, ~10!

wherem50 for SCB, andm5L otherwise, whileM52L2

for fmass, but M5(L21)21L for all the other cases. It is
shown in Sec. III, that knowing the lowest and highest or
terms is enough to determine the tail behavior of the relev
distributions.

We next consider the renormalization of the functi
f (z), for example,fmin . It is easy to see that since each c
can havel52 or l53, at the next iteration the larger ce
will have all the values froml52254 to l53259, with
corresponding binomial coefficients. It follows that th
renormalized generating functionf (2) has the form

f ~2!~z!5 f @ f ~z!#, ~11!

for example,

fmin
~2! ~z!5p2~p2z

21p3z
3!21p3~p2z

21p3z
3!3. ~12!

After n iterations the generating function is determined
the recursion relation

f ~n!~z!5 f @ f ~n21!~z!#5 f ~n21!@ f ~z!#, ~13!

and fmin
(n) (z) is a polynomial with powers from 2n to 3n.

Equation ~13! expresses mathematically the basic spirit
the H-cell RG. As stated, this procedure maps the origi
lattice onto a hierarchical structure, whose backbone is b
on the basic Wheatstone bridge@5,19# @see Fig. 1~c!#. On this
hierarchical structure, each bond splits into smaller bo
independently of the other bonds, ending up with the bi
mial coefficients as in Eq.~12!, with multiplicative probabili-
ties ~e.g.,p2

3 to have four bonds on the minimal path aft
two iterations!. This binomial multiplicative process, whic
is a dominant ingredient of the hierarchical structure, is
basis for our mathematical analysis below.
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Indeed, iteratingf , say fmin , one observes that the ave
age minimal path length increases in a multiplicative fashi
The averagê l & aftern iterations becomes

^ l &n5
d f ~n!~z!

dz
U
z51

5 f 8~1!
d f ~n21!~z!

dz
U
z51

5mmin
n ,

~14!

becausef (n)(1)51 for all n. Since the end-to-end length i
L52n, we conclude that ^ l &n5Ldmin, with
dmin5 ln(mmin)/ln(2)'1.087, as found before from this RG
@20#.

Similarly, we find the estimates for the dimensions
other structural properties. These results are collected
Table I, together with the exact results, or numerical e
mates if the exact value is unknown. Typically, the estima
from the 232 H cell deviate from the best estimates b
10%. As shown in Table I, the agreement can, however,
considerably improved by repeating the calculations with
largerL3L cell. For example, the RG results from cells wi
L54 ~full cell having 32 bonds, out of which 25 bonds d
termine the horizontal connectivity—a relatively small sy
tem still!, are within 1% of the best estimates.

To appreciate the general validity of the present approa
we consider thekth moment of, say,l . This is given by

^ l k&n5
dkf ~n!~z!

d~ lnz!k
U
z51

5mk
dkf ~n21!~z!

d~ lnz!k
U
z51

1•••

5mmin
kn 1•••5Lkdmin1corrections. ~15!

Thus the RG calculations, as presented here, are applic
for generalunifractal distributions, which have the commo
feature thatf (z) is analytical, being a simple polynomia
with only integer powers ofz. In particular, Sec. III deals
with mathematical branching processes, which assume
the probability generating functionf is analytical. A draw-
back is that our discussion excludes the distribution of re
tances, for which one would find nonanalyticalf R(z), e.g.,
232 H cell gives

f R~z!5 1
8z1 2

8z
5/31 4

8z
21 1

8z
3, ~16!

with mR523/12.

III. BRANCHING PROCESSES

Consider again the minimal paths in theH-cell RG with
b52. As discussed in Sec. II, each bond on the minimal p
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56 175RENORMALIZATION GROUP CALCULATION OF . . .
has the same branching probabilities,p2 andp3, to split into
two or three smaller steps, respectively. This defines a
dom process with the probability generating functionf (z)
@see Eq.~3!, which obeys Eq.~13!#. The mathematical litera
ture identifies these kinds of random processes as~Galton-
Watson! branching processes@27#. The same applies to th
other properties discussed above. Therefore, we now sum
rize some existing exact results concerning these proce
which we use in Sec. IV. For more details see Ref.@27# and
articles cited below.

The mathematical branching process originates from
study of the family extinction@28#. The probability that a
parent has exactlyr children ispr , r50,1,2, . . . Each indi-
vidual in the following generations has the same probab
ties of having a certain number of off-springs. The numbe
members in thenth generation isXn , and the aim is to study
the probability distribution ofXn asn→`. The connection
to theH-cell RG calculations for distributions of structur
properties, as described in Sec. II, is quite clear.

Indeed, also in this context the fundamental quantity is
probability generating function f(z), which describes how a
single individual branches in each generation

f ~z!5(
r50

`

prz
r5pmz

m1•••1pMz
M, ~17!

wherem(M ) is the minimum~maximum! number of off-
springs, andz is a complex auxiliary variable. The mea
number of the offsprings ism5 f 8(1). Depending onm, the
branching process is supercritical (m.1), critical (m51), or
subcritical (m,1). While m is related to the fractal dimen
sionality D̃ via m5LD̃, these correspond toD̃.0, D̃50,
and D̃,0, respectively. In this paper, we need to consid
only the supercritical branching processes.

For what follows it is essential that we have a fin
m.1, i.e., asupercritical process. It is easy to check th
this condition is valid for all the cases of the preceding s
tion. For the supercritical branching process one can sh
@27# that the population size normalized by the mean num
of the offsprings,vn5Xn /m

n, converges~asn→`) almost
surely ~everywhere, except on a set of zero measure! to a
nondegenerate limit distributiong(v)[ limn→` f

(n)(vmn).
This mathematical proof@27# thus also confirms thatg(v) is
only a function of the scaled variablev5X/^X&, proving the
scaling form Eq.~1! for this type of RG. In order to study
g, define themoment-generating functionf(s) by

f~s![^evs&5E evsg~v!dv. ~18!

Of course, the knowledge off(s) is sufficient to determine
the probability density of the limit distribution, becaus
g(v) is given by Fourier transformingf( i t ) ~with real t).
Next we derive an equation forf. Using the relation

^Xk&5S z ddzD
k

f ~z!uz515S d

d~ lnz! D
k

f ~z!uz51 , ~19!

it follows that
n-

a-
es,

a

i-
f

e

r

-
w
r

^esX&5(
k

sk

k!
^Xk&5(

k

sk

k! S d

d~ lnz! D
k

f ~z!uz51

5 f ~elnz1s!uz515 f ~es!. ~20!

Therefore, after the first iteration we have

f~1!~s!5^esX/^X&&5 f ~es/^X&!. ~21!

After n iterations,^X&n5mn @see also Eq.~14!#, and thus

f~n!~ms!5 f ~n!~es/m
n21

!5 f @ f ~n21!~es/m
n21

!#

5 f @f~n21!~s!#. ~22!

Sincef (n)(s) has a limitf(s) for n→`, this yields

f~ms!5 f @f~s!#, ~23!

from whichf, and thus alsog, can be determined for given
f . Below we use this procedure to deriveg(v) for the dis-
tributions discussed in earlier sections.

From Eqs. ~17! and ~23! one can derive very usefu
asymptotic laws for the moment-generating functionf(s)
with real s. The first part is due to Harris@29#, and the
second to Bingham@30#.

Theorem 1.Assume thatm.1, and letd5 logmM, and
h5 logmm. Then

~1! As s→`,

lnf~s!5sdA~s!1O~1!, ~24!

where A(s) is continuous, positive and periodic in ln(s);
A(ms)5A(s).

~2! If m.1 in Eq. ~17!, then ass→2`,

2 lnf~s!5~2s!hB~s!1O~1!, ~25!

where B(s) is continuous, positive and periodic in ln(s);
B(ms)5B(s).

~3! If m<1 in Eq. ~17!, then ass→2`,

2 lnf~s!52as1O~1!, ~26!

wherea52 logm@f8(q)#, andq is the smallest non-negativ
solution forq5 f (q).

Theorem 1 yields the following results for the tail beha
ior of the limit distributiong(v). The first two parts, which
relate to the cumulative probability densit
G(v)5*0

vg(v8)dv8, are due to Biggins and Bingham@31#,
while the last part, a local result forg whenm<1, is origi-
nally due to Dubuc@32# and sharpened in@31#.

Theorem 2. Again m.1, d5 logmM, h5 logmm @see Eq.
~17!#, and define the cumulative probability densi
G(v)5*0

vg(v8)dv8. Then
~1! As v→`,

2 ln@12G~v!#5xd8A†~v!1o~vd8!, ~27!

where d85d/(d21).0, and A†(v) is real analytic on
(0,̀ ), positive and multiplicatively periodic with period
md21; A†(md21v)5A†(v).

~2! If m.1 in Eq. ~17!, then asv→0,
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176 56J.-P. HOVI AND AMNON AHARONY
2 lnG~v!5vh8B†~v!1o~vh8!. ~28!

where h85h/(h21),0, and B†(v) is real analytic on
(0,̀ ), positive and multiplicatively periodic with period
m12h; B†(m12hv)5B†(v).

~3! If m<1 in Eq. ~17!, define
f̂ (z)5@ f „q1(12q)z…2q#/(12q), whereq is the smallest
non-negative solution forq5 f (q). Then the moment gener
ating function for the conditional probability densit
ĝ(v)[ limn→` f̂

(n)(vmh), given thatvÞ0, satisfies Eq.~23!
with f̂ . As v→0,

ĝ~v!5va8C†~v!1o~va8!, ~29!

wherea85a21,a52 logm@f8(q)#52logm@ f̂8(0)#, andC† is
a continuous, positive, and multiplicatively periodic functio
C†(v)5C†(mv).

In the last part of Theorem 2, which deals with the co
ditional probability density ĝ(v), the parameter
q5g(0)5 limn→` f

(n)(0) is the probability thatv50. To
see thatq is also given by solvingq5 f (q), consider the
recursion relation f (n)(z)5 f @ f (n21)(z)#. The fact that
q5 f (q) follows by settingz50 and lettingn→`. One has
to pick the smallest non-negative root becausef is a convex
function @27#.

The previous theorems contain the periodic functio
(A,A†,B,B†,C†), which, however, turn out to be practicall
constants. This near constancy phenomenon is mathem
cally interesting in its own right, and has been studied
several papers@30–33#. Here it is enough to note that th
Fourier coefficients of these periodic functions decay ex
nentially @32,33#. We have calculated these functions n
merically @34# for several cases arising from our small-c
RG calculations, and found that the relative variation
these functions is of the order 1023 at most.

IV. DISTRIBUTIONS OF STRUCTURAL PROPERTIES

We now apply the above considerations to the distri
tions of geometrical properties on percolation clusters.
introduce the numerical procedure used in solving Eq.~23!
for our RG calculations~Sec. IV A 1!. Numerically calcu-
lated distributions of several structural properties from sm
cell RG are compared with the predictions of Theorem 2
the supercritical branching processes in Secs. IV A
IV A 3. While we expect that our RG distributions approa
the exact distributions for percolation clusters in the lim
L→`, we utilize the general structure of the probability ge
erating functionf @see discussion after Eq.~10!# to deduce
general predictions for the asymptotic tail behavior for bo
small and large arguments~Sec. IV B!. These predictions are
then compared with the numerical data from the critical p
colation clusters~Sec. IV C!.

In the last part of this section~Sec. IV D! we apply our
results to the~multifractal! moments of localized wave func
tions and the Ising spin correlations at low temperatur
These relate to the minimal path and SCB distributions,
spectively.
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A. Structural properties of percolation: RG calculations

1. Numerical solution of Eq. (23)

In order to check the mapping between the branching p
cesses and the RG calculations for the distribution functio
we start by solving Eq.~23! for f(s) @29#, where the prob-
ability generating functionf is determined by an exact enu
meration ofH cells with a length rescale factorL ~here
L52,3,4). For smalls, f is analytic, and can be expanded
a Taylor seriesf(s)5(aks

k. Substituting into Eq.~23!, we
can solve for the coefficients$ak% up to a certain order. Hav
ing a good approximant forf(s) in the ranges0,usu,ms0
near the origin, we then iterate Eq.~23! to find f for larger
usu. In this work we typically computed the first 16–24 term
of the Taylor series, ands0 was chosen in such a way tha
ms0'0.7.

For example, the results for the minimal path case~from
the 232 H cell! are shown in Fig. 2. Clearly, the resul
agree well with the asymptotic predictions of Theorem
with visible deviations only at small positives. Having
solved Eq.~23! for f, we next derivedg(v) by Fourier
transformingf( i t ) numerically~the real part is an even, an
the imaginary part is an odd function!. As described in Sec
III, this gives the distribution functionsg(v) for the small-
cell RG calculations. These distribution functions are co
pared with the asymptotic predictions of Theorem 2 belo

2. Comparison of RG data with asymptotics of Theorem 2:
Supercritical case m>1

We consider first the supercritical casem.1, which ex-
cludes only the number of SCB’s. For example, Fig. 3 d
plays the cumulative distribution functions for~a! minimal
paths,~b! average edge-to-edge SAW, and~c! the mass of
the percolation cluster calculated from theH-cell RG with
L52. The dashed lines in Fig. 3 show the predictions
Theorem 2

FIG. 2. The moment-generating functionf(s) ~solid line! for
the minimal paths calculated from the 232 H cell. Dashed lines
represent the asymptotic behavior from Theorem 1. Ass→`,
ln(f)5c11Asd, and for s→2`, ln(f)5c22B(2s)h. From
Eqs. ~3! and ~23! we get for this casec152

1
2ln(0.125),

A'0.4667, d5 ln(3)/ln(2.125), c252 ln(0.875), B'1.0817,
h5 ln(2)/ln(2.125).



he
ns
ant
3
ood
2

n

eo-
if-

nc-
e
u-
s
ta

ay
ll

th

t of

n
al-
h

f
. It
se

in-

o
ility
ion

r

e

s

56 177RENORMALIZATION GROUP CALCULATION OF . . .
FIG. 3. Cumulative distribution functions for~a! minimal path,
~b! average edge-to-edge SAW,~c! mass of the percolating cluste
~solid lines!. The data are calculated from theH-cell RG with
L52. Dashed lines~main chart and insets! show the suggested
asymptotic tail behavior Eqs.~30! and ~31!: for largev, 12G(v)

5c18exp(2A†vd8), while for smallv, G(v) 5c28exp(2B†vh8). The
proportionality constantsc1,28 are fitted to the data, but the rest of th
numerical factors are determined by RG:~a! d8'3.186, h8
'211.43,A†'0.7287,B†'0.0818,c1,28 50.3860.05, 0.2560.04,
~b! d8'4.011, h8'25.268,A†'0.4046,B†'0.2183,c1,28 50.28
60.04, 0.2760.04, ~c! d8'3.550, h8'20.8659, A†'0.3795,
B†'1.796,c1,28 50.2860.04, 1.860.2. For comparison, dotted line
in the main chart show the fit usingc185c2851.
G~v!5c28exp~2B†vh8! for v!1, ~30!

12G~v!5c18exp~2A†vd8! for v@1. ~31!

Note that since the first two parts of Theorem 2 give t
asymptotic behavior of the cumulative distribution functio
only within exponential accuracy, we have allowed const
prefactorsc1,28 to stimulate higher order corrections. Figure
indicates that such prefactors are enough to achieve a g
fit between the data and asymptotic results of Theorem
@35#.

Although we lack detailed mathematical information o
the probability density, we can compareg(v) with the de-
rivative ofG(v). Thus we expect that

g~v!52c28B
†h8vh821exp~2B†vh8! for v!1,

~32!

g~v!5c18A
†d8vd821exp~2A†vd8! for v@1. ~33!

Of course, the corrections to the exponential terms of Th
rem 2 may be the source of power-law prefactors which d
fer from those of Eqs.~32! and ~33!. However, while such
corrections are presently unknown@35#, we compare our data
with these equations. Figure 4 shows the distribution fu
tions g(v) for ~a! minimal paths,~b! average edge-to-edg
SAW and ~c! the mass of the percolation cluster, as calc
lated from theH-cell RG withL52. The same figure show
Eqs. ~32! and ~33! as dashed lines. We find that the da
show a good agreement with Eqs.~32! and~33! in both tails,
although usually the asymptotic regime is quite far aw
from the peak of the distribution. This peak is often we
described by an asymmetric Gaussian function~see, e.g., Fig.
3 of Ref. @17#!.

We also studied these distributions using theH-cell RG
with L53,4, as well as the distributions of the maximal pa
and the mass of the backbone~data not shown!. We also
found similar results for all these other cases, independen
the length rescale factorL or of the physical property of
interest.

In conclusion, Theorem 2 implies that the distributio
functionsg decay essentially exponentially in both ends,
though possibly with more slowly varying prefactors whic
may involve an unknown power law ofv, another exponen-
tial term, or at least a multiplicative constant@35#. Note,
however, that Theorem 2 does not identify the ranges ov
for which the asymptotic exponential dependence applies
is not a priori clear if available numerical data reach the
ranges.

3. Comparison of RG data with asymptotics of Theorem 2:
Supercritical case m<1

This part applies to the distribution of the number of s
gly connected bonds. Sincef sc hasm50 @see Eq.~7!#, Theo-
rem 2 implies that theH-cell RG has a nonzero probability t
have no SCB. As discussed after Theorem 2, this probab
is given by the smallest non-negative root of the equat
q5 f sc(q). For the L3L H-cell RG, we find that



s

e

G

,
n

es
.,

ion

not

and
m

bu-

r
ape
up

is

he
tion

ior

n

178 56J.-P. HOVI AND AMNON AHARONY
q5g(0)'0.1926, 0.1918, 0.1905 forL52,3,4, respectively.
As discussed below, extrapolation to largeL still leaves this
fraction at about 18% here.

Because SCB hasg(0).0 @contrary to the previous case
above whereg(0)50] we shall study the distribution

FIG. 4. Distributiong(v) for ~a! minimal path, ~b! average
edge-to-edge SAW, and~c! mass of the percolating cluster~solid
lines!. The data are calculated from theH-cell RG withL52. The
dashed lines show the suggested asymptotic tail behavior Eqs.~32!
and ~33!. The numerical factors are the same as in Fig. 3.
ĝ(v), i.e., the probability density given thatvÞ0, instead of
g. As m50, the third part of Theorem 2 applies, and w
have a local result for the left-hand tail of theĝ

ĝ~v!5C†va8, for v!1, ~34!

while the right-hand tail ofĝ is still ~at least within exponen-
tial accuracy! described by Eq.~33!. Equation~34! involves
the exponenta8, which can be determined by the R
similarly to dsc5 logL@m#. Due to the relationq5 f (q), one
realizes that f 8(q) increases multiplicatively, i.e.
(d/dz) f (n)(z) uz5q5@ f 8(q)#n. Therefore, one can define a
exponentx5 logL@f8(q)#5adsc. Calculatingx for small cell
sizes, we can extrapolate the results toL→` in a somewhat
controlled manner. Studying the distributions for cell siz
L<4, we find that x'1.1313, 1.12 447, 1.10 562, i.e
a85(x2dsc)/dsc'0.6162, 0.5510, 0.5063, forL52,3,4, re-
spectively~the results fordsc are listed in Table I!. Plotting
these numbers vs 1/lnL @5# and extrapolating toL→`, we
estimatex51.060.1, which givesa850.3560.15.

We now compare the RG data with Eqs.~34! and ~33!.
For example, Fig. 5 shows the results of the RG calculat
of ĝ from a 232 H cell ~solid lines!, together with the
asymptotics of Eqs.~34! and ~33! ~dashed lines!. We also
studied the distributions for length rescale factorsL53,4, but
the results are very similar and therefore the data are
shown. In particular, we find~see, e.g., Fig. 5! that the left-
hand tail of the data agrees excellently with Eq.~34!. The
data also agree with the exponential decay on the right-h
tail, but the asymptotic regime is again quite far away fro
the peak.

B. Predictions for the tail behavior of the distribution
functions in real samples

We expect our RG results to approach the exact distri
tions for percolation clusters in the limitL→`. Furthermore,
the scaling functiong(v) is expected to be universal fo
every system with the same dimensionality, system sh
and boundary conditions. In fact, our renormalization gro
argument bears this out, showing analytically thatg depends
only on the scaled variable, e.g.,v5 l /^ l &. Of course, in a
real percolation problem the average, say, minimal path
only proportional toLdmin, and thereforel /^ l &5 l /aLdmin ~the
RG hasa51). The correct choice ofa gives^ l /^ l &&51 and
normalizes the distribution simultaneously. Details for t
specific systems should therefore enter the scaling func
only via this nonuniversal amplitudea. Below we use the
general structure of the probability generating functionf to
deduce general predictions for the asymptotic tail behav
of these universal distribution functions.

1. Supercritical case m>1

As explained above,m is related to the fractal dimensio
D̃ via m5LD̃. For largeL, we havem5L,M'L2 @see Eq.
~10!#, and, therefore,

h51/D̃, ~35!

d52h, ~36!
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h85~12D̃ !21, ~37!

d852/~22D̃ !. ~38!

The exponential tail behavior of Eqs.~32! and~33! is, there-
fore, simply related to the appropriate fractal dimensionD̃.
These results should hold, e.g., for the distributions of~i!
minimal paths,~ii ! average edge-to-edge SAW,~iii ! maximal
paths,~iv! the mass of the percolation cluster, as well as
~v! the mass of the backbone.

2. Supercritical case m<1

This section applies to the distribution of the singly co
nected bonds. The RG calculations presented in Sec. IV
reveal three major features, which we expect to hold also
real critical percolation clusters.

~1! There is a finite probabilityq that the percolation clus
ter has no SCB. For theH-cell RG this probability is quite

FIG. 5. The conditional probability densityĝ(v) of the number
of the singly connected bonds on~a! linear, ~b! double-logarithmic
scale~solid lines!. The dashed lines show the suggested asympt
tail behavior Eqs.~34! and ~33!. The data are calculated form th
H-cell RG with L52. In this case we findC†'1.3345,
a8'0.6162,d8'1.792,A†'0.5844,c1850.460.1.
r

-
3
r

large: the small-cell RG calculations giveq'0.1860.01 as
L→`.

~2! For v!1, Eq. ~34! holds, andĝ should be a power
law ĝ}va8. As discussed in Sec. IV A 3,a8 depends on the
details off , and we do not know how to express it simply
terms of the fractal dimensiondsc. It is possible thata8 is a
new independent exponent. Our numerical RG calculati
give a850.3560.15 forL→`.

~3! For v@1, g is described~at least within exponentia
accuracy! by Eq. ~33!. For this cased852/(22dsc)58/5.

C. Comparison of the predictions with the numerical data

We are now in the position to compare the predictio
from the RG calculations with the numerical data. We st
discussing the supercritical casem.1, and we concentrate
on the distributions of the mass of the cluster and of
minimal paths. One motivation for this choice is that t
asymptotics of Eqs.~32! and ~33! may dominate the data
only quite far away from the peak. This fact is evident also
the RG data~see Sec. IV A!, for which one knows that Theo
rem 2 is exact. Since the numerical data for critical perco
tion clusters is inevitably less accurate than our small-c
RG calculations, we feel that one should start with easy
amples. Our RG considerations imply that because the fra
dimension for the minimal paths~mass of the cluster! is
close to 1~2!, h8(d8) is large, and thus most of the weight
on the left-~right-! hand tail ofg. Thus the shape of thes
distributions should make the exponential decay easy to
serve on the fastly decaying tail. Unfortunately, the oppos
may hold for the other tail.

Furthermore, simulations on real percolation clusters h
been usually performed with fixed topological, rather th
with fixed geometrical distance@10,11#. Our theory, based on
theH-cell RG, relates to the latter case. The numerical
ception involves Neumann and Havlin’s@11# data for the
distribution of mass in 2D site percolation on a square latti
On the other hand, except for the different normalizati
prefactor, one expects that the minimal path distribut
~with fixed L) depends on the same scaled variab
l /Ldmin, as the distribution ofL ’s with fixed l , and it is rea-
sonable to expect the same exponential factor in both di
butions. We shall try to compare available numerical data
the minimal paths with our predictions below. Unfortunate
we are not aware of numerical data for the distribution
maximal paths, average edge-to-edge SAW, or the mas
the backbone, calculated with fixed geometrical distance

We also discuss the distribution of the SCB, which
described by a supercritical branching process withm50,
and present a comparison with the numerical data@38#. This
subsection is then concluded with a short discussion of
above comparisons.

1. Distribution of the mass of the cluster

For the mass distribution Ref.@11# assumed simple func
tional forms for g(v) to analyze their data, like
exp(C2A†vd82B†vh8) or B†vh8exp(2A†vd8), finally set-
tling to favor the former double-exponential form. In partic
lar, they found that both trial functions gaved8519.260.2
for the right-hand tail.

ic
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180 56J.-P. HOVI AND AMNON AHARONY
Analyzing the data from Ref.@11# we find that the ampli-
tude readsa52.0860.01. Then, using Eqs.~37! and ~38!,
we find that the exponents describing the tail behavior sho
read h85(12D)21'21.116 and d852/(22D)519.2.
The latter result is in agreement with Ref.@11#, because the
normalization affects only the coefficientA†. Since we do
not know the exactf for the limit L→` @34#, A†,B†.0 as
well as the prefactorsc1,28 in Eqs. ~32! and ~33! have to be
fitted. The result of this comparison is displayed in Fig.
We see that the asymptotic behavior of the data is ind
reasonably well described by the theoretical predictions
bothends. In particular, the fit on the right-hand tail is qu
impressive, but allowing some inaccuracy for the last poi
on the left-hand tail would improve the fit also in that ta
~see Fig. 4 of Ref.@17#!. This agreement between th
H-cell RG and the numerical data of Fig. 6 also supports
universality ofg between the site and bond problems.

FIG. 6. Plot of the distribution of mass within radiusR:
P(M uR)M5g(M /^M &)5g(v) vsM /aRD5M /^M &5v in ~a! lin-
ear,~b! double-logarithmic scale (d). Data are taken from Fig. 7 in
Ref. @11#, and the distribution is normalized usinga52.08. Solid
lines represent our suggested asymptotic behavior Eqs.~32! and
~33! with h851/(12D)'21.116 andd852/(22D)519.2. The
~near! constantsA†'0.1260.04 andB†'462 are fitted to the
data.
ld

.
d
n

s

e

2. Distribution of the minimal paths

This distribution has been studied quite extensively d
ing the last years. Usually it has been assumed@11,36# that
the minimal path distribution has a simple power-exponen
functional form, i.e.,g(v)5Cvgexp(2B†vh8), where heu-
ristic arguments@10,36# give thath85(12dmin)

21.
Figure 7 shows the distribution of minimal paths as me

sured from the 2D site problem on the square lattice@37#.
Analyzing these data we find the amplitud
a50.80560.010. The left-hand tail of this distribution es
sentially gives the probability for the minimal path being
straight line, and should behave according to Eq.~32! with
h85(12dmin)

21'27.143. Note that the exponential ter
reproduces earlier heuristic arguments for this asympto
@10#, while ~as discussed in Sec. IV A 2! the power-law pref-
actorvh821 results from assuming only the simplest kind
correction, i.e., a constant, in Theorem 2. As shown in Fig

FIG. 7. The distribution of the lengthsl of minimal paths for
geometrical distanceL: g(v) versusv5 l /^ l &5 l /aLdmin in ~a! lin-
ear,~b! double-logarithmic scale. The data are from Ref.@37#, and
we find a50.805. Solid lines represent our suggested asympt
behavior Eq. ~32! with h851/(12dmin)'27.143, dmin
51.1460.01 @11,22#, and B†50.23560.04. The data apparentl
does not extend to the asymptotic regime on the right-hand end,
therefore comparison with Eq.~33! is not shown.
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56 181RENORMALIZATION GROUP CALCULATION OF . . .
the data fits excellently with this result. In fact, Eq.~32!
seems to reproduce much of this distribution, even near
peak. On the other hand, using Eq.~33!, the right-hand tail of
this distribution should also decay exponentially, w
d852/(22dmin)'2.326 for largev5 l /aLdmin. However, the
exponential term apparently dominates only very far in
right-hand tail. The available data for the right-hand tail lo
like a power law, thus being still in an intermediate range
v. Therefore, we were not able to fit the right-hand tail
these data acceptably with Eq.~33!.

3. Distribution of the singly connected bonds

The distribution of the number of the singly connect
bonds has been discussed by Kantor@38#, who measured this
distribution from the 2D bond problem on the square latti
In particular, the numerical measurements of Ref.@38# show
that there is a finite probability to have no SCB, in the ple
ing agreement with our RG results. In fact, the data give t
this probability is about 0.19@38#, which practically coin-
cides with the extrapolation of theH-cell RG results to large
L, qRG50.1860.01. This precise agreement is probably d
to the fact thatH-cell RG relates to the bond problem. I
fact,q may depend on the specific percolation problem~e.g.,
lattice structure!.

Figure 8 shows the distributionĝ for the number of the
singly connected bonds. The solid lines in Fig. 8 show
predicted power-law~exponential! asymptotics for the left-
hand~right-hand! tail of this distribution. The left-hand tai
agrees very well with Eq.~34!, although the best fit on tha
tail is achieved by choosinga850.2260.03, which is
slightly smaller than the RG estimateaRG8 50.3560.15.
However, taking into account that the RG estimate is ba
on extrapolation of the results from very smallH cells with
L52,3,4 toL→`, this small numerical discrepancy is n
significant. The right-hand tail seems to be also well d
scribed by Eq.~33!, whered852/(22dsc)58/5. It is satis-
factory to observe that the data agree with the RG pre
tions inboth tails.

4. Discussion

In general, the above checks reveal that the RG pre
tions compare favorably with the numerical data from cr
cal 2D percolation clusters. In particular, the distribution
SCB show excellentquantitativeagreement with the RG cal
culations. On the other hand, the fit to the right-hand tail
the minimal path distribution is disappointing. As note
above, Eq.~32! seems to explain much of the available da
of the minimal path distribution. This is probably due to t
fact thatdmin is close to unity, and, therefore,h8 is large. On
the other hand, it seems that the right-hand tail of Fig. 7
not yet reached the other asymptotic regime governed by
~33!. Note that the numerical checks using RG distributio
for which Theorem 2 is definitely exact, already demo
strated that the asymptotic regime may apply only for v
large ~small! arguments. Since more precise measureme
of the right end of the minimal path distribution may dema
more computer time than what is feasible today, additio
checks for other distributions, like that of~average, longest!
SAW or the mass of the backbone, seem highly desira
e
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However, to the best of our knowledge, such measurem
with fixed geometrical distance do not exist presently.

For simplicity, we have concentrated on 2D percolatio
but our results can be straightforwardly generalized to g
erald dimensions. Considering ad-dimensionalH cell, it is
easy to observe that the structure of the generating funct
f remains unchanged, except for the generalization
M'Ld @see Eq.~17!#. Thus, with the exception of SCB, th
asymptotic tail behavior is still given~at least within expo-
nential accuracy! by Eqs.~32! and ~33!, with

h85~12D̃ !21, ~39!

d85d/~d2D̃ !. ~40!

For the distribution of SCB there should be a nonzero pr
ability q to find no SCB (d,6), and Eqs.~34! and ~33!
apply with d85d/(d2dsc). Our theory does not give the
functional forms ofa8(d),q(d).

FIG. 8. The conditional distribution of the number of the sing

connected bonds:ĝ(v) vs v5 l sc/^ l sc& in ~a! linear, ~b! double-
logarithmic plot. The data are taken from Ref.@38#. The solid lines
show the predicted asymptotic behavior Eqs.~34! and ~33! with
d852/(22dsc)58/5. Herea850.2260.03 andA†50.6660.2 are
fitted to the data.
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D. Localized wave functions and Ising spin correlations

In order to illustrate the applications of the above resu
we discuss the moments of localized wave functions
Ising spin correlations, which couple to the minimal path a
SCB distributions, respectively. Although the minimal pa
and SCB distributions are both unifractal, i.e.,^ l k&}Lkdmin,
the physical properties which depend on them may sh
multifractal features.

1. Moments of localized wave functions

As noted above, the localized wave functionC
}exp(2l/j) @1#, wherej is the localization length. Recently
Ref. @2# studied these localized excitations on the critic
percolation clusters by assuming the power-exponential f
for the minimal path distribution,g(v)5Cvgexp(2B†vh8).
Using steepest descents, these authors found that the
ments ofC behave as

ln^Ck&}k~1/dmin!L, for 0,k,kc,1 , ~41!

ln^Ck&}const1kL, for k.kc,1.0, ~42!

wherekc,152B†h8j, and in this caseL denotes the distanc
from the center of the localized excitation. The unifrac
behavior abovekc,1 arose because of the constraintl.L.
Although their numerics supported the multifractality of E
~41!, they could not collect numerical evidence for the cro
over to unifractal behavior, Eq.~42!, for k.kc,1 .

Now we apply the mathematical results of Sec. III to an
lyze these moments ofC. From the exponential decay of th
wave function,C}exp(2l/j), and Eq.~18! if follows that

^Ck&5^e2kl/j&5^e2~k^ l &/j!l /^ l &&5fS 2
k^ l &

j D . ~43!

For illustration, see Fig. 2 which showsf from the 232
H cell. Using Theorem 1, forL→`, we find

ln^Ck&5c11AUS k^ l &
j D Ud

5c11c2uku~2/dmin!L2,

as k→2`, ~44!

ln^Ck&5c182BS k^ l &
j D h

5c181c28k
~1/dmin!L, as k→`, ~45!

with constantsc1, c2, c18 , andc28 .
Up to this point, we have considered the behavior of

physical properties in the limitL→`. However, in this con-
text L plays the role of the distance from the center of t
fraction instead of the system size. In order to take into
count the effects of finiteL, we have to consider necessa
modifications of Eq.~18!. Since the lengths of the minima
paths have lengths betweenL and L2 @see Eq.~10!#, v is
bounded by vmin<v<vmax with vmin5L/^ l &
5(1/a)L12dmin and vmax'L2/^ l &5(1/a)L22dmin. In this
case Eq.~18! need to be replaced by

fL~s!5E
vmin

vmax
evsg~v!dv. ~46!
,
d
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In particular, if s52k^ l &/j, then for large enoughk the
integrand is largest atv5vmin and decays fast for large
v. Using Eq. ~32! we find that this happens fo
k.kc,1[2B†h8jah821. Thus for k.kc,1 the moments of
C depend on the lower integration bound

ln^Ck&5 lnF E
vmin

vmax
e2k^ l &vjg~v!dvG

' ln@g~vmin!e
2kL/j#

5c2kL/j, for k.kc,1 , ~47!

wherec is a constant. This calculation thus reproduces
~42!. Similarly, for k,kc,2[2A†d8jad821, the integral is
dominated by the upper cutoff. In this case

ln^Ck&5 lnF E
vmin

vmax
e2k^ l &v/jg~v!dvG

' ln@g~vmax!e
2kL2/j#

5c82kL2/j, for k,kc,2 , ~48!

with a constantc8.
In conclusion, we find that both the negative and posit

moments are multifractal for largeuku and kc,2,k,kc,1 .
However, for large enoughuku, the moments ofC are deter-
mined by the distance of shortest or longest minimal p
instead of the distributiong(v). This gives that high mo-
ments ofC are unifractal@see Eqs.~47! and ~52!#. The re-
sults for positive moments were previously obtained in R
@2#, while the considerations of the negative moments
new. These negative moments are dominated by the v
rare small values ofC.

2. Moments of Ising spin correlations

At low temperatures, Ising spin correlations behave
S0SL}exp(2lsc/j) @3#, where the overline denotes the the
mal averaging andj is the spin-spin correlation length. Sim
larly to the localized wave functions, we have

^S0SL&5^exp~2klsc/j!&

5^e2~k^ l sc&/j!l sc/^ l sc&&5fS 2
k^ l sc&

j D , ~49!

and therefore, using Theorem 1,

ln^S0SL&5c11AUk^ l sc&
j Ud

5c11c2uku~2/dsc!L2, as k→2`,

~50!

ln^S0SL̄&5c181BS k^ l sc&
j D5c181c28kL

dsc, as k→`,

~51!

with constantsc1, c2, c18 , andc28 .
In this case finiteL introduces only an upper cutoff to Eq

~18!, since 0,v<vmax'L2/^ l sc&5(1/a)L22dsc. Therefore,
for k,kc,2[2A†d8jad821,
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ln^S0SL&5 lnF E
0

vmax
e2k~^ l sc&v/jg~v!dvG

' ln@g~vmax!e
2kL2/j#5c82kL2/j, for k,kc,2 ,

~52!

wherec8 is a constant.
In conclusion, we find that the positive moments of t

Ising spin correlation are unifractal for largek. On the other
hand, the negative moments are multifractal for largeuku and
k.kc,2 , but cross over to the unifractal behavior f
k,kc,2 .

V. CONCLUSIONS AND DISCUSSION

We have studied the distributions of the structural pro
erties for percolation clusters between two terminals a
fixed geometrical distance, using theH-cell renormalization
group. We showed that this RG is equivalent to a branch
process, and applied the tools developed in the mathema
literature to obtain results for the distribution function
which are exact on the hierarchical lattice and approxim
for the original square lattice. This approach strongly s
ports scaling functions as in Eq.~1!, which depend only on
the scaled variable, e.g.,l /^ l &.

We found that the mapping between branching proces
and RG is applicable forgeneralunifractal distributions en-
countered in percolation. We computed the distributions
the minimal and maximal paths, the average edge-to-e
SAW; the number of the singly connected bonds, the num
of spanning clusters, and the masses of the percolation c
ters as well as it’s backbone. We derived recursion relati
for these distribution functions, and found exact function
forms for their asymptotic tail behavior at both small a
large arguments ingeneraldimensiond.

Our predictions for the asymptotic tail behavior were n
merically checked using published data from 2D percolat
clusters. In general, our results agree well with the availa
numerical data, but the results for the large argument tai
the minimal path distribution were disappointing probab
due to the insufficient numerics. On the other hand, the
results for the number of singly connected bonds arequan-
titatively supported by the numerical data. Thus we hope t
this paper stimulates more numerical work for other dis
butions, like simulations for distributions of the~average,
longest! SAW or the mass of the backbone, to check o
predictions in more detail.

We also obtained some results for the distribution of
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calized wave functions as well as for the Ising spin corre
tions. We find that thekth moments of these properties a
multifractal for largeuku, except for large positive moment
of Ising spin correlations which are unifractal. However, u
timately for large enoughuku all these moments cross over
unifractal behavior. We find that these high moments
determined by the integration limits instead of byg(v).

In particular, we found encouraging results for the nu
ber of singly connected bonds where most accurate m
ematical information is available. Apparently, more detail
mathematical knowledge of supercritical branching p
cesses, withm.1, would enable more accurate predictio
also for other structural properties for percolation. While th
information may be available in the future, we hope that t
work combining the RG with branching processes may u
mately show a way to an exact calculation of these distri
tions.

In all the examples we treated only geometrical proper
involving substructures of asingle cluster which connects
two terminals. This is an artifact of the hierarchical structu
which consistently treats each smaller part of the cluste
connecting two end points of the corresponding Wheatst
bridge. One can imagine other RG schemes, which wo
allow breaking the cluster into disjoint parts so that each p
still connects the two opposite edges of the sample. In su
RG scheme one could derive generating functions for
number of spanning clusters, a topic which has recently
tracted much attention@39#. Below six dimensions, one ex
pects the average number of spanning clusters to remai
nite, hencem51. Theorems for suchcritical branching
processes predict thatg(v) decays exponentially withv,
@40,41# in apparent contradiction to Aizenman’s proof th
g(v) should be exponential inv2 @39#, as also recently con
firmed numerically@42,43#. We hope that future work will
clarify this apparent contradiction.
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