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Distribution functions of properties of critical percolation clusters are calculated usingHheell” real
space renormalization groyRG). We consider structural properties which span two terminals on percolation
clusters. These include the lengthgwifinimal, average edge-to-edge, longestf-avoiding walks, the number
of the singly connected bonds, and the masses of percolation clusters, as well as of the backbone. We show that
the RG corresponds to(&alton-Watsopbranching process, and apply theorems developed in the mathemati-
cal literature. We derive recursion relations for the distribution functions, and find exact functional forms for
their asymptotic tail behavior at both small and large arguments. The results for the minimal paths have
implications on thgmultifracta) distribution of wave functions, while the singly connected bonds determine
the moments of Ising correlations on these clusters. Our results compare well with existing simulation data.
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[. INTRODUCTION L, when the end points cover all possible pairs on all the
realizations. Numerically, it has been nofdd,11] that, for
Consider two points on a random fractal, at a Euclidearlargel andL, P(l,L) obeys scaling, i.e.,

distancel. from each other. Many physical properties depend
on the detailed geometry of the fractal network which con- P(I,L)= Eg(|/<|>)_ (1
nects these two “terminals.” For example, the wave func- |
tions of localized vibrational excitations or of electrons de-
cay as exp{1/&), wherel(L) is the length of the minimal
path (or “chemical distance} between the terminals on the
network[1,2]. Ising spin correlations decay at low tempera-

tures as expfls/¢), wherels{L) counts the singly con-  po qerived. Such arguments are presented below.
nected bonds on this paf3]. Heisenberg spin correlations  Aq noted above, some physically relevant quantities are
decay as exptR/¢), whereR(L) is the “resistance” be-  exponential in properties like For example, localized wave
tween the ends, when each bond represents a unit reS§tor functions behave a¥ xexp(-1/8). The distribution of¥ is

On Euclidean spaces, the geometrical propettiekc,  very broad, and moments & were found to be character-
andR, as well as many other lengths which determine physiized by independent powers o¥) [2]. This phenomenon is
cal properties, are simply and uniquely expressed in terms dfalled multifractality. Here we extend earlier conclusions on
L. For example)=L. On regular hierarchical fractals, like such multifractality, and present results for negative mo-
the Mandelbrot-Given curvi4], properties likel, I, and  ments. We also derive results for positive and negative mo-
R have unique power-law dependenceslowhen the two  ments of the Ising spin correlations.
end points are at the ends of the basic itera{ibh e.g., Our specific calculation concentrates on percolation clus-
I =L, orlg= L%, with ds;=In2/In3. If the end points are not ters[5]. At the percolation threshold, these clusters are sta-
at such ends, then the prefactor in this power law may osciltistically self-similar. Therefore, they can be described by the
late with L, reflecting lacunarity6—8]. renormalization groudRG). Here we use an approximate

In the present paper we are concerned wéthdom frac-  real space RG, called theH: cell,” which turned out to be
tals, like percolation clusters at the percolation threshold. Fovery accurate for bond percolation on the square lattice
such fractals, quantities likgL) have different values for [14,15. It has also given excellent results for the permeabil-
different pairs of end points and for different realizations ofity of oil reservoirs, away from the percolation threshold
the random structure. At first, research concentrated on fing46]. The H-cell RG is described in Sec. Il. Basically, it
ing thetypical or theaveragevalues of such quantities, and maps groups of bonds onto renormalized bonds, as shown in
it was found that these scale as powerslof e.g., (I) Fig. 1. Effectively, each renormalized bond may be de-
oc L 9min [9], scribed as a “Wheatstone bridge,” as shown in Fi¢c)l

Here we studydistribution functionslike P(1,L), where Iteration of this mapping is equivalent to replacing the origi-
P(l,L)dI represents the probability to measure a shorteshal lattice by a hierarchical structure, in which each bond has
path in the rangégl,l +dI] for a fixed Euclidean distance an internal structure which is the same as that of the original

Heuristic arguments also yielded some functional forms for
the scaling functiong(w) [10,12,13. However, there has
been no analytic derivation for EqQl), or any exact argu-
ment from which the explicit functional form af(w) could
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the RG procedure to the branching processes, which are dis-
cussed in Sec. lll.
For simplicity, we discuss two dimensional percolation,
and consider first a2 2 H cell, which is shown in Fig. ().
¢ ¢ In the RG transformation the eight bonds in the cell are re-
placed by a “renormalized” cell with only two bonds, which
represent connectivity in the horizontal and vertical direc-
(b) tions. Considering the horizontal spanning, and ignoring the
_J l dangling bonds, one realizes that the horizontal connectivity
is determined by five bonds. Given that each of these five
bonds has a probabilitp (1—p) to be occupiedvacanj,
the resulting configurations are displayed in Figb)lto-
gether with their probabilities. The sum of these probabilities
yields the renormalized probability of the new bdiat,5],

@)

ps pia-p  aptp)  2p%(1p)?

2p%(1p2  4pP-p?  2p%(1-p)°
p'=R(p)=2p°—5p*+2p3+2pZ. )

() This recursion relation has the nontrivial fixed point
1 — <]> — p.=1/2, as it should be for the bond problem. One of the
advantages of thEl cell is that this result holds for a general
LxL cell [15].

FIG. 1. (8) A 2X2 H cell with eight bondg(eft), and a renor- Considering the minimal paths we find that only the right-
malized cell with only two bondgright), (b) generic parts of the most configuration in the upper row of Figth) has a mini-
original cell, which contribute to the horizontal spanning, 40d  mal path length =3, while all other spanning configurations
hierarchical structure for the backbone. have I=2. At p., we thus havel=3 with probability

_ .  p3=2p3%(1-p)¥p’'=1/8, and |=2 otherwise, with
“bridge.” The H-cell RG equations become exact on this 5, = 7/8. Averages of within a cell can be calculated from
hierarchical lattice. Experience shof{# that the dilute ver-  he generating function
sion of this hierarchical structure imitates the geometrical
and physical properties of two dimensioriaD) percolation fmin(2) = P22°+ p3z°. ©)
clusters very well. However, so far this mapping was only
used to calculate average properties. Guided by this experBpecifically,
ence we report the results from the first RG calculation of the
full distribution functions. A preliminary brief report of these
results appeared in RdfL7]. As we show below, the calcu-
lation of such distribution functions also becomes exact on
the hierarchical structure related to tHecell RG. and({l)=f . (1)= pmin=17/8.

When one looks at geometrical properties, we show in Similar considerations on the-cell RG can be extended
Sec. Il that theH-cell RG corresponds to laranching pro-  for several other structural properties, like the maximal paths
cess Such processes have been widely studied in the mathlongest SAW between the edgethe average length of all
ematical literature, and in Sec. Il we summarize the relevanthe edge-to-edge SAW'’s, the number of the singly connected
theorems. These are then used in Sec. IV to study the distrbonds(SCB), and the mass of the backbo(®#B):
butions of the minimal and maximal paths, of average edge-

d k
<|k>:2kp2+3kp3:(zd—z) fmin(2)]2=1, (4)

to-edge self-avoiding walkéSAW), of the number of the fmad2) = 152°+ 16 2°, 5
singly connected bonds, and of the masses of the percolation

clusters and of their backbone between the two terminals. fsal2) =522+ 32°, (6)
Mathematical theorems for the branching processes allow us

to derive explicit expressions for the asymptotic tail behavior fsdz)=5+5z+32°+52° ()
of the corresponding probability densities, relating the tail

behavior to the appropriate fractal dimension. Since the foy(2) = 1627+ £Z°+ 552°+ 15 2°, 8

mathematical theorems apply also to the moment generating.
function (expw)), we are also able to derive exact expres-With  Uma=39/16,  psaw=73/32,  ue=13/8, and
sions for the(multifracta) moments of functions likeP, or  “bb=47/16, respectively. Note that for the average edge-to-

Ising spin correlationgSec. IV D). Finally, a short conclu- €d9e SAW (s,,) every SAW is considered to be equally
sion completes the paper in Sec. V. probable, irrespective of its actual length. This corresponds

to the infinite temperature limit, where the fugacities are
equal for all the bonds. For alternative approaches see, e.g.,
Refs.[18] and[19]. The generating function for the mass of

In this section we discuss the RG calculation of variousthe backbone is given by calculating the number of bonds
structural properties of percolation clusters. The main resulivhich support SAW. The mass of the percolation cluster at
here is the formulation of the RG calculation in terms of ap. is determined by the spanning configurations of the com-
generating function f This formulation enables us to map plete eight bond cell, from which we find that

II. “ H-CELL” RENORMALIZED GROUP
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TABLE I. Estimates for the fractal dimensions from the RG calculations with the length rescale factor
L=2,3,4. The rightmost entry is the exact redult numerical estimate if the exact value is unkndwn

Property L=2 L=3 L=4 L—oo
singly connected bondgl{) 0.700 0.725 0.734 3/1]
minimal path i) 1.087 1.118 1.133 1.140.01[11,27
average edge-to-edge SAWD{,,) 1.190 1.243 1.268 1.290.025[23-25
maximal path €2, 1.285 1.357 1.389 140.1[5]
mass of backbonelYy,,) 1.555 e e 1.647+0.004[26]
mass of the clusterX) 2.155 1.979 1.928 91/481.896(5]
fmasd2) = 222+ 2278+ L4+ 225+ 278 Indeed, iteratingf, sayf,,, one observes that the aver-
s 7 1.8 age minimal path length increases in a multiplicative fashion.
+ 1282 + 1282 (9 The averagél) aftern iterations becomes
yielding pmass= 285/64. dfM(z) df"=1D(z)
These functiond are completely determined by the RG. (Y= 4z =f’(1)T = Ui
In order to calculate them one has to classify all possible z=1 z=1
spanning configurations of the renormalized cell. The time (14)

required for this classification increases very rapidly Withbecause‘(“)(l)=l for all n. Since the end-to-end lenath is
increasing cell size. However, the lowest and highest orde _on we conclude. that (1) — | dmin w?th
- ] n— ]

terms in the polynomiaf are easy to deduce: for a general Ay = In(u)/IN(2)~1.087, as found before from this RG
L XL cell one has [20]

f(2)=py2™+ - - +puzV, (10) Similarly, we find thg estimates for the dimensions of_
other structural properties. These results are collected in
wherem=0 for SCB, andn=L otherwise, whileM =212  Table |, together with the exact results, or numerical esti-
for fmass DUt M=(L—1)2+L for all the other cases. It is Mates if the exact value is unknown. Typically, the estimates
shown in Sec. 1l that knowing the lowest and highest ordeffom the 2<2 H cell deviate from the best estimates by
terms is enough to determine the tail behavior of the relevant0%-: As shown in Table I, the agreement can, however, be
distributions. considerably improved by repeating the calculations with a
We next consider the renormalization of the functionlargerL XL cell. For example, the RG results from cells with
f(2), for example f . It is easy to see that since each cell L=4 (full cell having 32 bonds, out of which 25 bonds de-
can havel=2 or =3, at the next iteration the larger cell termine the horizontal connectivity—a relatively small sys-
will have all the values froml =22=4 to |=32=9, with  tem stil), are within 1% of the best estimates.

corresponding binomial coefficients. It follows that the 1O appreciate the general validity of the present approach,

renormalized generating functidi¥’) has the form we consider th&th moment of, sayl. This is given by
f2(2)=1[f(2)], (11) 0 :dkf(n)(z) . dF Dz
S T(TP L Y T{ T LI T
for example,
=ukN +. .. = kdmin+ corrections. (15)

f2(2)=pa(paz?+ p3z®) 2+ pa(poz2+p3z®)®.  (12)
Thus the RG calculations, as presented here, are applicable
After n iterations the generating function is determined viafor generalunifractal distributions, which have the common
the recursion relation feature thatf(z) is analytical, being a simple polynomial
(Vo — £1-5 (=1 1 $(n=1) with only integer powers of. In particular, Sec. Il deals
f(z)=f[f (2)]=f [f(2)], (13 with mathematical branching processes, which assume that
the probability generating functioh is analytical. A draw-

(n) i i i . . : I .
and fiin(2) is a polynomial with powers from 2to 3". a0 is that our discussion excludes the distribution of resis-
Equation (13) expresses mathematically the basic spirit Oftances, for which one would find nonanalytidal(z), e.g.,
the H-cell RG. As stated, this procedure maps the originab o> 4 cell gives

lattice onto a hierarchical structure, whose backbone is built

on the basic Wheatstone bridgg19| [see Fig. {c)]. On this fr(z)=1z+225P3+ 422+ 123 (16)
hierarchical structure, each bond splits into smaller bonds

independently of the other bonds, ending up with the binowith pr=23/12.

mial coefficients as in Eq12), with multiplicative probabili-
ties (e.g., pg to have four bonds on the minimal path after
two iterationg. This binomial multiplicative process, which
is a dominant ingredient of the hierarchical structure, is the Consider again the minimal paths in thkecell RG with
basis for our mathematical analysis below. b=2. As discussed in Sec. Il, each bond on the minimal path

[ll. BRANCHING PROCESSES



56 RENORMALIZATION GROUP CALCULATION OF ... 175

has the same branching probabilitips,and p;, to split into sk sk k

two or three smaller steps, respectively. This defines a ran- (=2 F<Xk>=2 F( m) f(2)],=1

dom process with the probability generating functit(z) K K

[see Eq(3), which obeys Eq(13)]. The mathematical litera- =f(e"*9)|,_1=f(e%). (20)

ture identifies these kinds of random processe$Gadton-
Watson branching processd27]. The same applies to the Therefore, after the first iteration we have
other properties discussed above. Therefore, we now summa-

rize some existing exact results concerning these processes, P D(s)=(e)=f(e™). (21)
which we use in Sec. IV. For more details see R27] and , . N
articles cited below. After n iterations,(X),= u" [see also Eq(14)], and thus

The mathematical branching process originates from a /-1 1), -1
study of the family extinctior{28]. The probability that a ¢V (us) =M ) =D (e )]
parent has exactly children isp,, r=0,1,2, ... Each indi- = f[ ¢ D(s)]. 22
vidual in the following generations has the same probabili-

ties of having a certain number of off-springs. The number ofsince ¢("(s) has a limit¢(s) for n—, this yields
members in theéth generation iX,,, and the aim is to study

the probability distribution ofX,, asn—«. The connection d(us)=Tf[ ()], (23
to the H-cell RG calculations for distributions of structural . . _
properties, as described in Sec. lI, is quite clear. from which ¢, and thus alsg, can be determined for given

Indeed, also in this context the fundamental quantity is thef . Below we use this procedure to derigéw) for the dis-
probability generating function(t), which describes how a tributions discussed in earlier sections.
single individual branches in each generation From Egs.(17) and (23) one can derive very useful
asymptotic laws for the moment-generating functig(s)
o with real s. The first part is due to Harrig29], and the
f(z)= E Pz =pPmz™+ - - - +puzV, (17) second to Bingharh30].
r=0 Theorem 1.Assume thatu>1, and leté=log,M, and
_ o _ n=log,m. Then
where m(M) is the minimum(maximum number of off- (1) As s—»,
springs, andz is a complex auxiliary variable. The mean
number of the offsprings ig=f’(1). Depending onu, the Ing(s)=s’A(s)+0(1), (29
branching process is supercritical 1), critical (u=1), or
subcritical (w<1). While x is related to the fractal dimen- vAv?er§ A,(AS() )is continuous, positive and periodic in §
sionality D via u=LP, these correspond tB>0, D=0, mS)=AS).
and D<0, respectively. In this paper, we need to consider (2) If m>1 in Eq. (17), then ass— —,
only the supercritical branching processes. —Ing(s)=(—s)"B(s)+0O(1), (25)
For what follows it is essential that we have a finite
u>1, i.e., asupercritical process. It is easy to check that where B(s) is continuous, positive and periodic in $i(
this condition is valid for all the cases of the preceding secB(us)=B(s).
tion. For the supercritical branching process one can show (3) If m<1 in Eq.(17), then ass— —,
[27] that the population size normalized by the mean number
of the offsprings,w,= X, /", convergegasn—c) almost —Ing(s)=—as+0(1), (26)
surely (everywhere, except on a set of zero meastwea
nondegenerate limit distributiog(w)=lim, .f™(wu"). Wherea=-—log,[f'(q)], andq is the smallest non-negative
This mathematical prod®27] thus also confirms thag(w) is ~ solution forq=1f(q).

only a function of the scaled variable=X/(X), provingthe ~ Theorem 1 yields the following results for the tail behav-
Sca“ng form Eq(l) for this type of RG. In order to Study ior of the limit dIStrlbUtlong(w): The first tWO' parts, Wthh
g, define themoment-generating functios(s) by relate  to the cumulative  probability  density

G(w)=[§9(w")dw’, are due to Biggins and Binghala1],
while the last part, a local result fgg whenm=<1, is origi-
¢(S)E<ews>=f e’*g(w)dw. (18 nally due to Dubud32] and sharpened if81].

Theorem 2 Again u>1, =log,M, n=Ilog,m [see Eq.
(17], and define the cumulative probability density
G(w)=[3d(w')dw’. Then

(1) As w— o,

Of course, the knowledge af(s) is sufficient to determine
the probability density of the limit distribution, because
g(w) is given by Fourier transforming(it) (with realt).
Next we derive an equation fab. Using the relation ) ’
g ab. Using CIn[1-G(w)]=x* AT(@) + 0(0®), 27)
d\k d \k r_ teoy -
<Xk>:(z_) f(Z)|z=1=( ) f(2),eq, (19 where & —.5./(5—1)>0, gnpl A. (w) is rea! anglytlc on
dz d(Inz) (02), positive and multiplicatively periodic with period
M(S—l; AT(MzS—lw):A‘r(w)_
it follows that (2) If m>1 in Eq.(17), then asw—0,
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—ING(w)=0" Bl (w)+0(w™). (28)

20t

where 7' = 7/(7—1)<0, and B'(w) is real analytic on

(0»), positive and multiplicatively periodic with period

pt" 7 B (u' 7w)=B(w). 10}

3 If m=<1 in Eq. (17), define

f(z)=[f(q+(1—q)z)—q]/(1—q), whereq is the smallest

non-negative solution fog=f(q). Then the moment gener- 0
ating function for the conditional probability density

g(w)=lim,_.f™(wu?), given thatw#0, satisfies Eq(23)
with f. As w—0, A0}

3(0) =0 Cl(w) +0(0®), (29 10 o 10

wherea'=a—1,a=— IogM[f’(q)]z—Iogﬂ[f’(O)], andC'is ) _ o

a continuous, positive, and multiplicatively periodic function ~ FIG. 2. The moment-generating functiafi(s) (solid line) for

CT(w)=CT(,uw). the minimal paths calcu!ated from thex2 H cell. Dashed lines

In the last part of Theorem 2, which deals with the con-TePresent the asymptotic behavior from Theorem 1. sAsc,

. . - In(¢)=c,+As’, and for s——o, In(¢)=c,—B(—9)”. From

ditional probabll(lr%/ d_en5|ty J(w), 5 the parameter Egs. 3) and (23 we get for this casec,=— 1n(0.125),

9=9(0)=lim,_..f*7(0) is the probability thaiw=0. To  r~0.4667, s=In(3)In(2.125), c,=-In(0.875), B~1.0817,

see thatq is also given by solvingy=f(q), consider the ,—in2)/In(2.125).

recursion relation f("W(z)=f[f(""Y)(z)]. The fact that

g="f(q) follows by settingz=0 and lettingn— . One has A. Structural properties of percolation: RG calculations

to pick the smallest non-negative root becatise a convex

function[27].

The previous theorems contain the periodic functions In order to check the mapping between the branching pro-
(A,AT,B,B",C"), which, however, turn out to be practically cesses and the RG calculations for the distribution functions,
constants. This near constancy phenomenon is mathematie start by solving Eq(23) for ¢(s) [29], where the prob-
cally interesting in its own right, and has been studied inability generating functiorf is determined by an exact enu-
several paper§30—33. Here it is enough to note that the meration ofH cells with a length rescale factdr (here
Fourier coefficients of these periodic functions decay expol=2,3,4). For smals, ¢ is analytic, and can be expanded as
nentially [32,33. We have calculated these functions nu-a Taylor seriesp(s)=Sa,s . Substituting into Eq(23), we
merically [34] for several cases arising from our small-cell can solve for the coefficien{s,} up to a certain order. Hav-
RG calculations, and found that the relative variation ofing a good approximant fog(s) in the ranges,<|s|<usg
these functions is of the order 18 at most. near the origin, we then iterate E@3) to find ¢ for larger

|s|. In this work we typically computed the first 16—24 terms

of the Taylor series, and, was chosen in such a way that
IV. DISTRIBUTIONS OF STRUCTURAL PROPERTIES 1Sy~0.7.

We now apply the above considerations to the distribu- O €xample, the results for the minimal path céfsem
tions of geometrical properties on percolation clusters. wéhe 2x2 H cell) are shown in Fig. 2. Clearly, the results
introduce the numerical procedure used in solving @§  29ree well with the asymptotic predictions of Theorem 1,
for our RG calculationgSec. IV A 1). Numerically calcu- with visible deviations only at sm.all positive. Havmg
lated distributions of several structural properties from smallSolved Eq.(23) for ¢, we next derivedg(w) by Fourier
cell RG are compared with the predictions of Theorem 2 foftfansformingg(it) numerically(the real part is an even, and
the supercritical branching processes in Secs. IV A othe imaginary part is an odd functibms described in Sec.

IV A 3. While we expect that our RG distributions approach !l this gives the distribution functiong(w) for the small-
the exact distributions for percolation clusters in the limitCell RG calculations. These distribution functions are com-

L—, we utilize the general structure of the probability gen_pared with the asymptotic predictions of Theorem 2 below.
erating functionf [see discussion after ELO)] to deduce
general predictions for the asymptotic tail behavior for both
small and large argumentSec. IV B. These predictions are
then compared with the numerical data from the critical per- We consider first the supercritical case>1, which ex-
colation clustergSec. IV O. cludes only the number of SCB’s. For example, Fig. 3 dis-

In the last part of this sectiofSec. IV D we apply our plays the cumulative distribution functions f@) minimal
results to themultifracta) moments of localized wave func- paths,(b) average edge-to-edge SAW, afal the mass of
tions and the Ising spin correlations at low temperaturesthe percolation cluster calculated from thiecell RG with
These relate to the minimal path and SCB distributions, ret. =2. The dashed lines in Fig. 3 show the predictions of
spectively. Theorem 2

1. Numerical solution of Eq. (23)

2. Comparison of RG data with asymptotics of Theorem 2:
Supercritical case n¥1
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FIG. 3. Cumulative distribution functions f¢a) minimal path,
(b) average edge-to-edge SAW¢) mass of the percolating cluster
(solid lineg. The data are calculated from thé-cell RG with
L=2. Dashed linegmain chart and insetsshow the suggested
asymptotic tail behavior Eq$30) and (31): for large w, 1— G(w)
=cjexp(-Afw?), while for smallw, G(w) =csexp(-Bfw”). The
proportionality constants; , are fitted to the data, but the rest of the
numerical factors are determined by RG) §'~3.186, 7’
~-11.43,A"~0.7287,B"~0.0818,c; ,= 0.38+0.05, 0.25-0.04,
(b) 8'~4.011, »'~—5.268, A"~0.4046,B"~0.2183, c} ,=0.28
+0.04, 0.270.04, (c) &' ~3.550, '~—0.8659, AT~0.3795,
BT%1.796,0L2=0.28i 0.04, 1.8-0.2. For comparison, dotted lines
in the main chart show the fit usingf=c;=1.

G(w)=chexp(—BTw”) for w<1, (30)

1-G(w)=clexp—ATw?) for w>1. (31

Note that since the first two parts of Theorem 2 give the
asymptotic behavior of the cumulative distribution functions
only within exponential accuracy, we have allowed constant
prefactorsc; , to stimulate higher order corrections. Figure 3
indicates that such prefactors are enough to achieve a good
fit between the data and asymptotic results of Theorem 2
[35].

Although we lack detailed mathematical information on
the probability density, we can compagéw) with the de-
rivative of G(w). Thus we expect that

g(w)=—c,B"y' 0" “lexp—BTw”) for w<i,
(32

g(w)=ciAT8' 0® lexp —ATw?) for w>1. (33

Of course, the corrections to the exponential terms of Theo-
rem 2 may be the source of power-law prefactors which dif-
fer from those of Eqs(32) and (33). However, while such
corrections are presently unknoW86], we compare our data
with these equations. Figure 4 shows the distribution func-
tions g(w) for (a) minimal paths,(b) average edge-to-edge
SAW and(c) the mass of the percolation cluster, as calcu-
lated from theH-cell RG withL=2. The same figure shows
Egs. (32) and (33) as dashed lines. We find that the data
show a good agreement with E¢82) and(33) in both tails,
although usually the asymptotic regime is quite far away
from the peak of the distribution. This peak is often well
described by an asymmetric Gaussian func{see, e.g., Fig.

3 of Ref.[17]).

We also studied these distributions using thecell RG
with L= 3,4, as well as the distributions of the maximal path
and the mass of the backbori@ata not shown We also
found similar results for all these other cases, independent of
the length rescale factdr or of the physical property of
interest.

In conclusion, Theorem 2 implies that the distribution
functionsg decay essentially exponentially in both ends, al-
though possibly with more slowly varying prefactors which
may involve an unknown power law ef, another exponen-
tial term, or at least a multiplicative constaf85]. Note,
however, that Theorem 2 does not identify the range& of
for which the asymptotic exponential dependence applies. It
is nota priori clear if available numerical data reach these
ranges.

3. Comparison of RG data with asymptotics of Theorem 2:
Supercritical case ne1

This part applies to the distribution of the number of sin-
gly connected bonds. Sindg.hasm=0 [see Eq(7)], Theo-
rem 2 implies that thél-cell RG has a nonzero probability to
have no SCB. As discussed after Theorem 2, this probability
is given by the smallest non-negative root of the equation
g=fs{q). For the LXL H-cell RG, we find that
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FIG. 4. Distributiong(w) for (a) minimal path, (b) average
edge-to-edge SAW, an@) mass of the percolating clustésolid
lines). The data are calculated from thkcell RG withL=2. The

dashed lines show the suggested asymptotic tail behavior(&2)s.
and (33). The numerical factors are the same as in Fig. 3.

g=9(0)~0.1926, 0.1918, 0.1905 fdr=2,3,4, respectively.
As discussed below, extrapolation to ladgestill leaves this
fraction at about 18% here.

Because SCB hag0)>0 [contrary to the previous cases
above whereg(0)=0] we shall study the distribution

f;(w), i.e., the probability density given that+ 0, instead of
g. As m=0, the third part of Theorem 2 applies, and we

have a local result for the left-hand tail of tlg]e
g(w)=CTw?®, for <1, (34)

while the right-hand tail of is still (at least within exponen-
tial accuracy described by Eq(33). Equation(34) involves
the exponenta’, which can be determined by the RG
similarly to ds.=log,[w]. Due to the relatiorg="f(q), one
realizes that f'(q) increases multiplicatively, i.e.,
(d/d2)f™M(2),-q=[f'(q)]". Therefore, one can define an
exponentx=log,[f'(q)]=ads.. Calculatingx for small cell
sizes, we can extrapolate the resultd te-oc in a somewhat
controlled manner. Studying the distributions for cell sizes
L<4, we find thatx=~1.1313, 1.12 447, 1.10562, i.e.,
a'=(Xx—dg)/ds=0.6162, 0.5510, 0.5063, fdr=2,3,4, re-
spectively(the results ford,. are listed in Table)l Plotting
these numbers vs 1ln[5] and extrapolating td.—o, we
estimatex=1.0+0.1, which givesa’ =0.35+0.15.

We now compare the RG data with Eq84) and (33).
For example, Fig. 5 shows the results of the RG calculation

of g from a 2x2 H cell (solid liney, together with the
asymptotics of Eqs(34) and (33) (dashed lines We also
studied the distributions for length rescale factors3,4, but

the results are very similar and therefore the data are not
shown. In particular, we findsee, e.g., Fig. 5that the left-
hand tail of the data agrees excellently with E&4). The
data also agree with the exponential decay on the right-hand
tail, but the asymptotic regime is again quite far away from
the peak.

B. Predictions for the tail behavior of the distribution
functions in real samples

We expect our RG results to approach the exact distribu-
tions for percolation clusters in the limit—oo. Furthermore,
the scaling functiong(w) is expected to be universal for
every system with the same dimensionality, system shape
and boundary conditions. In fact, our renormalization group
argument bears this out, showing analytically thatepends
only on the scaled variable, e.go=1/(l). Of course, in a
real percolation problem the average, say, minimal path is
only proportional tol%min, and thereforé/(1)=1/aL%min (the
RG hasa=1). The correct choice d gives{l/{I))=1 and
normalizes the distribution simultaneously. Details for the
specific systems should therefore enter the scaling function
only via this nonuniversal amplituda. Below we use the
general structure of the probability generating functfoto
deduce general predictions for the asymptotic tail behavior
of these universal distribution functions.

1. Supercritical case m1
As explained abovey is related to the fractal dimension
D via u=LP. For largeL, we havem=L,M~L? [see Eq.
(10)], and, therefore,
n= 1/5, (35

6=217, (36)
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0.8 — . . . . . . large: the small-cell RG calculations gige=0.18+0.01 as
(a) :: L—oo, R

[ l (2) For w<1, Eq. (34) holds, andg should be a power

0.6} ] Iawéocw“'. As discussed in Sec. IV A 3y’ depends on the

details off, and we do not know how to express it simply in
terms of the fractal dimensioth. It is possible that' is a
new independent exponent. Our numerical RG calculations
give o' =0.35+0.15 forL—o,

(3) For w>1, g is describedat least within exponential
accuracy by Eqg. (33). For this caseS’ =2/(2—ds) =8/5.

9(®)

0.2t

C. Comparison of the predictions with the numerical data

0.0t i i i i A A We are now in the position to compare the predictions
] 1 2 3 from the RG calculations with the numerical data. We start
0 =g /<lg> discussing the supercritical cage>1, and we concentrate
on the distributions of the mass of the cluster and of the
- minimal paths. One motivation for this choice is that the
100 } (b) ] asymptotics of Eqs(32) and (33) may dominate the data
# only quite far away from the peak. This fact is evident also in
the RG datdsee Sec. IV A, for which one knows that Theo-

1071 rem 2 is exact. Since the numerical data for critical percola-

tion clusters is inevitably less accurate than our small-cell

2102 RG calculations, we feel that one should start with easy ex-

<D amples. Our RG considerations imply that because the fractal
103 dimension for the minimal pathémass of the clusteris

close to 1(2), ' (4") is large, and thus most of the weight is

: on the left-(right-) hand tail ofg. Thus the shape of these

104 | HE distributions should make the exponential decay easy to ob-
i serve on the fastly decaying tail. Unfortunately, the opposite

105 . . . ) L may hold for the other tail.

105 10% 103 102 101 10° 10 Furthermore, simulations on real percolation clusters have

®=1_/<l > been usually performed with fixed topological, rather than
sc’ s with fixed geometrical distandd.0,11]. Our theory, based on
FIG. 5. The conditional probability densif(w) of the number ~ the H-cell RG, relates to the latter case. The numerical ex-
of the singly connected bonds ¢a linear, (b) double-logarithmic ~ Ception involves Neumann and Havlin[41] data for the

scale(solid lineg. The dashed lines show the suggested asymptotidistribution of mass in 2D site percolation on a square lattice.
tail behavior Eqs(34) and (33). The data are calculated form the On the other hand, except for the different normalization

H-cell RG with L=2. In this case we findCT~1.3345,  prefactor, one expects that the minimal path distribution

a'~0.6162,6'~1.792,A"~0.5844,c;=0.4+0.1. (with fixed L) depends on the same scaled variable,
I/L9min, as the distribution of.’s with fixed |, and it is rea-
7' =(1-D)°t 37) sonable to expect the same exponential factor in both distri-

butions. We shall try to compare available numerical data for
_ the minimal paths with our predictions below. Unfortunately,

0'=2/(2—-D). (38  we are not aware of numerical data for the distribution of

maximal paths, average edge-to-edge SAW, or the mass of

The exponential tail behavior of Eg82) and(33) is, there-  the backbone, calculated with fixed geometrical distance.
fore, simply related to the appropriate fractal dimensibn We also discuss the distribution of the SCB, which is
These results should hold, e.g., for the distributiong(ipf described by a supercritical branching process witi O,
minimal paths(ii) average edge-to-edge SAili) maximal ~ and present a comparison with the numerical §a&. This
paths,(iv) the mass of the percolation cluster, as well as forsubsection is then concluded with a short discussion of the
(v) the mass of the backbone. above comparisons.

2. Supercritical case nE1 1. Distribution of the mass of the cluster

This section applies to the distribution of the singly con-  For the mass distribution Ref11] assumed simple func-
nected bonds. The RG calculations presented in Sec. IV A onal forms for g(w) to analyze their data, like
reveal three major features, which we expect to hold also foexp(C—Afw® —BTw”') or Bfw” exp(~Afw?), finally set-
real critical percolation clusters. tling to favor the former double-exponential form. In particu-

(1) There is a finite probabilitg that the percolation clus- lar, they found that both trial functions gav&=19.2+0.2
ter has no SCB. For the-cell RG this probability is quite for the right-hand tail.
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FIG. 6. Plot of the distribution of mass within radiug: FIG. 7. The distribution of the lengthsof minimal paths for

P(M|R)M=g(M/(M)) =g(») vs M/aR>=M/(M)=w in (@ lin-  geometrical distanck: g(w) versusw=1/(1)=1/aL%n in (a) lin-
ear,(b) double-logarithmic scale®). Data are taken from Fig. 7in gy (b) double-logarithmic scale. The data are from R&f], and

Ref. [11], and the distribution is normalized usirg=2.08. Solid \ye find a=0.805. Solid lines represent our suggested asymptotic
lines represent our suggested asymptotic behavior B§.and behavior Eq. (32 with 7 =1/(1—dy)~—7.143, dpy,

(33 with »'= 1/(1T— D)~-1.116 andf’ =2/(2-D)=19.2. The  —1 14+0.01[11,22, and BT=0.235+0.04. The data apparently
(neaj constantsA’'~0.12+0.04 andB'~4*2 are fitted to the  oes not extend to the asymptotic regime on the right-hand end, and

data. therefore comparison with E¢33) is not shown.
Analyzing the data from Refl11] we find that the ampli- 2. Distribution of the minimal paths
tude readsa=2.08+0.01. Then, using Eqd37) and (38), This distribution has been studied quite extensively dur-

we find that the exponents describing the tail behavior shoulqing the last years. Usually it has been assuified36 that
read 7'=(1-D) '~-1.116 and §'=2/(2—D)=19.2.  the minimal path distribution has a simple power-exponential
The Iat.ter result is in agreement W|th .Ré:f:rl], pecause the i nctional form, i.e..g(w)=Caw’exp(—B'w”), where heu-
normalization affects only the_coefﬂmem . Sl*rnc?‘ we do  (istic argument$ 10,36 give thaty’'=(1—d,;) .

not know the exact for the limit L —oc [34], A",B'>0 as Figure 7 shows the distribution of minimal paths as mea-
well as the prefactorsy , in Egs.(32) and(33) have to be  syred from the 2D site problem on the square latfi8#].
fitted. The result of this comparison is displayed in Fig. 6.Analyzing these data we find the amplitude
We see that the asymptotic behavior of the data is indeed=0.805+0.010. The left-hand tail of this distribution es-
reasonably well described by the theoretical predictions irsentially gives the probability for the minimal path being a
bothends. In particular, the fit on the right-hand tail is quite straight line, and should behave according to &%) with
impressive, but allowing some inaccuracy for the last pointsy’ = (1—dy) ~1~—7.143. Note that the exponential term
on the left-hand tail would improve the fit also in that tail reproduces earlier heuristic arguments for this asymptotics
(see Fig. 4 of Ref[17]). This agreement between the [10], while (as discussed in Sec. IV A zhe power-law pref-
H-cell RG and the numerical data of Fig. 6 also supports thectorw” ~* results from assuming only the simplest kind of
universality ofg between the site and bond problems. correction, i.e., a constant, in Theorem 2. As shown in Fig. 7
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the data fits excellently with this result. In fact, EQR2) 0.5
seems to reproduce much of this distribution, even near the

peak. On the other hand, using E83), the right-hand tail of

this distribution should also decay exponentially, with 0.4}
6" =2/(2— dn) ~2.326 for largaw =/aL %in, However, the

exponential term apparently dominates only very far in the 03l
right-hand tail. The available data for the right-hand tail look
like a power law, thus being still in an intermediate range of
w. Therefore, we were not able to fit the right-hand tail of 0.2
these data acceptably with E@3).

9(v)

01}
3. Distribution of the singly connected bonds

The distribution of the number of the singly connected
bonds has been discussed by Kaf88], who measured this
distribution from the 2D bond problem on the square lattice.
In particular, the numerical measurements of R&88] show
that there is a finite probability to have no SCB, in the pleas-
ing agreement with our RG results. In fact, the data give that (b)
this probability is about 0.1938], which practically coin-
cides with the extrapolation of thé-cell RG results to large
L, qre=0.18+0.01. This precise agreement is probably due 10-1}
to the fact thatH-cell RG relates to the bond problem. In
fact, @ may depend on the specific percolation probieng.,
lattice structurg =

~ <D 10-2}
Figure 8 shows the distributiog for the number of the
singly connected bonds. The solid lines in Fig. 8 show the
predicted power-lawtexponentigl asymptotics for the left-
hand (right-hand tail of this distribution. The left-hand tail 103}
agrees very well with Eq(34), although the best fit on that
tail is achieved by choosingy’=0.22+0.03, which is ) ,
slightly smaller than the RG estimategps=0.35+0.15. 0.01 0.1 1 10
However, taking into account that the RG estimate is based
on extrapolation of the results from very smHllicells with
L=2,3,4 toL—x, this small humerical discrepancy is not
T e s o) e . comeiod bonio) 15 1/ n () nes () ol
factory to observe that the data agree with the RG predicl-ogamhm'c plot_. The data are _taken frqm RESE]. The solid "T‘es
tions in both tails. show the predicted asymptotic behavior Eqsﬁ) and (33) with
8'=2/(2—ds)=8/5. Herea'=0.22+0.03 andA'=0.66+0.2 are

fitted to the data.

0.0

o=l /<l >

o=l /K<l >

FIG. 8. The conditional distribution of the number of the singly

4. Discussion
In general, the above checks reveal that the RG prediCI_—|owever, to the best of our knowledge, such measurements

tions compare favorably with the numerical data from C”“'W'ﬂplg'rxgi?ngﬁg?etxga:]:\',S;acngfcgﬁtpaﬁégxﬁ glrjese(ar;ggiation
cal 2D percolation clusters. In particular, the distribution ofb t our resp Its}gan be straightforwardl eneralp od to er;—
SCB show excellenjuantitativeagreement with the RG cal- Ut ou u '9 wardly 9 1z 9

culations. On the other hand, the fit to the right-hand tail Oferald dimensions. ConsideringdrdimensionaH c_eII, Itis .
the minimal path distribution is disappointing. As noted easy to observe that the structure of the generating functions

- - f remains unchanged, except for the generalization in
above, Eq(32) seems to explain much of the available data, , =" _ b
of the minimal path distribution. This is probably due to the M~L" [see Eq(17)]. Thus, with the exception of SCB, the

fact thatd,, is close to unity, and, thereforey, is large. On asymptotic tail behavior is still givefat least within expo-

the other hand, it seems that the right-hand tail of Fig. 7 hagential accuracyby Egs.(32) and(33), with
not yet reached the other asymptotic regime governed by Eq.

(33). Note that the numerical checks using RG distributions, 7'=(1-D)7, (39)
for which Theorem 2 is definitely exact, already demon- _
strated that the asymptotic regime may apply only for very 6'=d/(d—D). (40

large (small) arguments. Since more precise measurements

of the right end of the minimal path distribution may demandFor the distribution of SCB there should be a nonzero prob-
more computer time than what is feasible today, additionafbility g to find no SCB @<6), and Eqgs.(34) and (33
checks for other distributions, like that ¢dverage, longest apply with §'=d/(d—ds). Our theory does not give the
SAW or the mass of the backbone, seem highly desirabl€unctional forms ofe’(d),q(d).
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D. Localized wave functions and Ising spin correlations In particular, if s=—k(l)/¢, then for large enougkk the

In order to illustrate the applications of the above results/ntégrand is largest ab=wm, and decays fast for larger
we discuss the moments of localized wave functions and- Using Eq. (32 we find that this happens for
Ising spin correlations, which couple to the minimal path anck>k.,=—B"%’'£a” ~. Thus fork>k., the moments of
SCB distributions, respectively. Although the minimal path'¥ depend on the lower integration bound
and SCB distributions are both unifractal, i.@.X)oc|kdmin,

the physical properties which depend on them may show In(WX)=In meaxe‘k“)‘“‘fg(w)dw
multifractal features. Omin
1. Moments of localized wave functions ~In[g(wmn)e ¢
As noted above, the localized wave functioW =c—kL/¢, for k>k¢q, (47)

cexp(—1/¢) [1], where¢ is the localization length. Recently,

Ref. [2] studied these localized excitations on the criticalwherec is a constant. This calculation thus reproduces Eg.
percolation clusters by assuming the power-exponential forny2). Similarly, for k< Ke o= —ATs a1 the integral is
for the minimal path distributiong(w)=Cw”exp(~B'w”).  dominated by the upper cutoff. In this case

Using steepest descents, these authors found that the mo-

ments of¥ behave as |n<\1fk>=ln{ fwmaxe’k“)‘”’gg(w)dw

@min

In(W*yockMmidL | for 0<k<ke, (41)

~IN[g(@made 4]

In{(¥*)oconstr kL,
=c’—kL?¢, for k<kc., (48)

for k>k; >0, (42

wherek. 1= —B'#'¢, and in this casé denotes the distance
from the center of the localized excitation. The unifractalwith a constant’.
behavior abovek.; arose because of the constraintL. In conclusion, we find that both the negative and positive
Although their numerics supported the multifractality of Eq. moments are multifractal for largek| and k. ,<k<Kkg .
(41), they could not collect numerical evidence for the cross-However, for large enougfk|, the moments of’ are deter-
over to unifractal behavior, Eq42), for k>k. ;. mined by the distance of shortest or longest minimal path
Now we apply the mathematical results of Sec. 1l to ana-instead of the distributiom(w). This gives that high mo-
lyze these moments o . From the exponential decay of the ments of ¥ are unifractalsee Eqs(47) and (52)]. The re-
wave function, W «exp(-1/¢), and Eq.(18) if follows that sults for positive moments were previously obtained in Ref.
) [2], while the considerations of the negative moments are
new. These negative moments are dominated by the ver
(WY = (e Ky = (e~ (KDY = ¢( _ T) (43) care small valuegs o y y

For illustration, see Fig. 2 which shows from the 2x2
H cell. Using Theorem 1, fok — o0, we find

2. Moments of Ising spin correlations

At low temperatures, Ising spin correlations behave as

13
=Cq+ Cy| K| (Hmin 2,

In<\If">=cl+A‘ (%)

as k——x, (44

k(1)
&

with constantsy, ¢,, ¢;, andc,.

n
In(‘lfk>=ci—B< ) =cy+cokMminl | as k—oo, (45)

SpS, cexp(—ls/ €) [3], where the overline denotes the ther-
mal averaging and is the spin-spin correlation length. Simi-
larly to the localized wave functions, we have

(SoSL)=(exp( —kls/£))

— (e~ (Kls9/8)lsc/ 150y ¢,( - k<|;9), (49)

and therefore, using Theorem 1,

6

Up to this point, we have considered the behavior of the (|
|n<sosL>=c1+A% =Cp+CyK|?9IL2, as k— —oo,

physical properties in the limit—oo. However, in this con-
text L plays the role of the distance from the center of the

fraction instead of the system size. In order to take into ac- (50
count the effects of finité., we have to consider necessary

modifications of Eq(18). Since the lengths of the minimal _— k(lso C L oaend
paths have lengths betweénand L? [see Eq.(10)],  is IN(SS)=c;+B £ =C1+CokLs, ask—w,
bounded by wminSoO<©ny With  ogmi,=LKI) (52)

=(La)Lr 9min and wmae=L?/(1)=(1/a)L2 %min, In this
case Eq(18) need to be replaced by with constants, c,, ¢;, andc,.

In this case finitd introduces only an upper cutoff to Eq.
anis)= [ "errgw)do. (4g (18, since 0<w=wne~L%(ls9=(1/a)L? % Therefore,

Wi for k<k.,=—A'é'¢a® 1,
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- Omax 0 v calized wave functions as well as for the Ising spin correla-
IN(SpSL)=In j e K0y (w)daw tions. We find that thé&cth moments of these properties are
0 multifractal for large|k|, except for large positive moments
%In[g(wmax)e_k"zlfkd —KkL%¢,  for k< Ko, of Ising spin correlations which are unifractal. However, ul-

timately for large enougtk| all these moments cross over to
(52 unifractal behavior. We find that these high moments are
determined by the integration limits instead of fw).
: : . In particular, we found encouraging results for the num-
_In conclusion, we find that the positive moments of theper of singly connected bonds where most accurate math-
Ising spin correlation are unifractal for large On the other g agical information is available. Apparently, more detailed
hand, the negative moments are multifractal for ldigeand 1 athematical knowledge of supercritical branching pro-
k>kez2, but cross over to the unifractal behavior for cesses; withm>1, would enable more accurate predictions
k<kez- also for other structural properties for percolation. While this
information may be available in the future, we hope that this
V. CONCLUSIONS AND DISCUSSION work combining the RG with branching processes may ulti-

We have studied the distributions of the structural prop_mately show a way to an exact calculation of these distribu-

erties for percolation clusters between two terminals at dions. . .
fixed geometrical distance, using thkcell renormalization . In "‘.‘" the examples we ”e?ted only geome}ncal properties
group. We showed that this RG is equivalent to a branchin%’{'}/\/owmg. substruptgres of ;nngle cIustgr wh|ch connects
process, and applied the tools developed in the mathematic qtermma}s. This is an artifact of the hierarchical structure,
literature to obtain results for the distribution functions, which cpn3|stently treats each smaller part O.f the cluster as
which are exact on the hierarchical lattice and approximat%o.nneCtIng two e'?d points of the corresponding W_heatstone
for the original square lattice. This approach strongly sup- ridge. O”? can |mag|ne_other. RG schemes, which would
ports scaling functions as in E€1), which depend only on al!ow breaking the cluster into disjoint parts so that each part
the scaled variable, e.d/(I). still connects the two opposite edges of .the sample. In such a

We found that the mapping between branching processe%G scheme one_could derive generating functions for the
and RG is applicable fogeneralunifractal distributions en- Aumber of spanning clusters, a topic V.Vh'Ch has recently at-
countered in percolation. We computed the distributions ofracted much attentiof89). Below S|x_d|men5|ons, one ex- -
the minimal and maximal paths, the average edge-to-ed ects the average number of spanning c.:I.usters to remain fi-
SAW; the number of the singly connected bonds, the numbe Ite, hence,uz_l. Theorems for such:rmcall branqhmg
of spanning clusters, and the masses of the percolation Clug_roces;es predict thay(w) Qe_cays exponennaylly witho,
ters as well as it's backbone. We derived recursion relation§ 0:4d in apparent contr{;\dl_ctlg)n to Aizenman’s proof that
for these distribution functions, and found exact functionalg(“’) should b_e exponential in® [39), as also recently con-
forms for their asymptotic tail behavior at both small andf'rm.ed ngmerlcally[42,4ﬂ. We.hope that future work will
large arguments igeneraldimensiond. clarify this apparent contradiction.

Our predictions for the asymptotic tail behavior were nu-
merically checked using published data from 2D percolation
clusters. In general, our results agree well with the available We thank J. D. Biggins and N. H. Bingham for correspon-
numerical data, but the results for the large argument tail oflence about the mathematical work on branching processes,
the minimal path distribution were disappointing probablyH. E. Roman for communicating his data for the minimal
due to the insufficient numerics. On the other hand, the R@ath distribution to us, M. Aizenman for discussions on the
results for the number of singly connected bondsauran-  number of spanning clusters, and D. Stauffer and P. Sen for
titatively supported by the numerical data. Thus we hope thatomments on the manuscript. J.-P.H. gratefully acknowledge
this paper stimulates more numerical work for other distri-financial support from the Neste Foundation, Emil Aaltonen
butions, like simulations for distributions of th@verage, Foundation, and the Finnish Cultural Foundation. This
longesi SAW or the mass of the backbone, to check ourproject was also supported by grants from the U.S.-Israel

predictions in more detail. Binational Science FoundatidaBSF) and the German-Israeli
We also obtained some results for the distribution of lo-Foundation(GIF).

wherec’ is a constant.
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